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Executive summary

This paper presents the results of a joint effort between the ALFI Risk Management working group and 
ALRiM on the backtesting of Value-at-Risk (VaR) models, i.e. the “means of examining whether or not 
reported VaR represents an accurate measure of [...] the actual level of risk” (Campbell, 2005). It proposes 
practical guidelines on how to perform and interpret backtests. This will help practitioners extract more 
value from VaR models and better understand the market risk of their UCITS. Given this scope, this paper 
is intended for risk managers and conducting persons in charge of risk management and adopts a somewhat 
technical stance.

The first section of this paper provides a definition of backtesting, as well as a summary of key aspects to 
consider. This section also contrasts model validation with backtesting, compares the use of hypothetical 
and actual P&L statements (clean and dirty backtesting), explains the types of error that can arise in back-
testing, and defines the power of a test.

The second section describes a set of elementary backtesting techniques. The two basic properties a VaR 
model should jointly satisfy are unconditional coverage and independence. Unconditional coverage refers to 
the fact that outliers (occurrences of losses worse than those predicted by the VaR) should not significant-
ly differ from the theoretical proportion (typically 1% under Luxembourg regulation). The independence 
property means that outliers should occur independently of each other. Several statistic tests aiming to test 
these properties are presented. 

The third section lists analysis procedures that need to be included in ongoing backtesting reviews and areas 
that could be investigated on an ad-hoc basis. Interpreting the outcome of these tests is of utmost impor-
tance. These tests cannot and should not replace or supersede a full-blown analysis and understanding of 
models: instead, they are to be considered as tools allowing the user to reduce the dimensionality of a com-
plex problem and therefore eventually raise red flags when warranted.

Appended to the paper, the reader will find a references section for further reading, an exhaustive glossary 
of terms used in this paper, and specific formulas and explanations to implement the tests described in Sec-
tion II including hypothesis statements, test statistics, and decision rules.

Please note that this document has been written by a working group of risk management experts 
from the Association of the Luxembourg Fund Industry (ALFI) and the Luxembourg Association 
for Risk Management (ALRiM). This document must not be relied upon as advice and is provided 
without any warranty of any kind and neither ALFI, ALRiM nor their members who contributed to 
this document accept any liability whatsoever for any action taken in reliance upon it.

Introduction

This paper presents the results of a joint effort between the ALFI Risk Management working group and 
ALRiM on the backtesting of Value at Risk (VaR) models. The first of a three-paper series, it describes the 
conceptual and practical basics of backtesting – how to properly backtest a VaR model beyond the obvious 
steps mandated by UCITS regulations. Future papers, in turn, will discuss how to respond to the apparent 
failure of a VaR model and how to structure related governance arrangements.

VaR is commonly used to calculate the exposure to market risk, called global risk exposure in the UCITS 
context. The financial crisis and subsequent events, however, have highlighted issues concerning the cali-
bration and reliability of VaR models. The industry has questioned not only the use of the VaR, but also its 
accuracy and its ability to capture the risk. Meanwhile, the CESR  guidelines 10-788 (especially Box 18), 
the CSSF Circular 11/512 as well as article 45(2)b of CSSF regulation 10-4 require monthly backtesting for 
UCITS calculating their global risk exposures using a VaR model and provide additional guidance. 

This paper, then, proposes practical guidelines on how to properly perform and interpret backtesting. It 
is structured in four sections. Starting with definitions and basic distinctions, it then describes some ele-
mentary statistical backtesting techniques before proposing additional, complementary analysis tools. The 
concluding section points to additional considerations to improve the backtesting framework.
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Thus, the performance of the VaR model against 
portfolio returns must constantly be reassessed to 
maintain the VaR’s credibility. This assessment is the 
primary purpose of backtesting, defined by Camp-
bell (2005) as the “means of examining whether or 
not reported VaR represents an accurate measure of 
[...] the actual level of risk”.

Beyond making the VaR a more authoritative indica-
tor, backtesting also helps strengthen the market risk 
measurement process. Recall that some VaR models 
are based on distributional assumption (e.g. normal-
ity, independent and identically distributed (i.i.d.) 
returns, etc.) while others assume that past returns, 
as defined in a certain way, closely approximate 
future returns. Model users always need to be aware 
of such assumptions and of the limitations of their 
models. They need to regularly question and test 
whether these assumptions are verified by the facts. 
Checking how the model performs in practice leads 
to examining the suitability of the risk measure-
ment models and their assumptions to find possible 
shortcomings. This, in turn, helps improve the risk 
measurement process.

I. A primer on backtesting

“Disclosure of quantitative measures of market risk, such as value-at-risk, is enlightening only 
when accompanied by a thorough discussion of how the risk measures were calculated and how they 
related to actual performance”

Alan Greenspan (1996).

Why backtest
VAR models?

Backtesting vs. 
Model Validation

Value-at-Risk (VaR) measures are part of the broad 
array of financial indicators that practitioners use 
and rely on daily for risk monitoring and decision 
making. Unlike most other indicators, a VaR mea-
sure is not a descriptive statistic that can be unequiv-
ocally “measured”: statistically speaking,  VaR is a 
forecasting measure2 provided by a selected model 
relying on a set of underlying assumptions. 

Therefore, it is merely estimated by one of the many 
financial models dedicated to this task. These VaR 
models sometimes yield diverging predictions for 
the same portfolio at the same date. This fact is 
well-known not only among risk managers, but also 
among the portfolio managers and traders whose 
freedom is constrained by VaR limits. Hence the 
need to demonstrate the accuracy of the forecasts 
provided by a given VaR model with respect to the 
actual subsequent observations.

This demonstration can never be done once and 
for all. VaR models rely, explicitly or not, on a set 
of assumptions that reasonably reflect real market 
dynamics most of the time. But sometimes these 
dynamics change, the assumptions become less rea-
sonable, and the models appear to fail: for instance, 
portfolio losses start exceeding the VaR with alarm-
ing regularity.

2 VaR is an application of the broader concept of distribution quantile forecasting applied in the context of risk management.

Model validation being a topic in its own right, this 
section is voluntarily kept short and aims to contrast 
backtesting and model validation. 

An independent validation is mandatory as per Box 
22 of the CESR guidelines 10-788 following the 
initial development (or any subsequent significant 
change3) of a VaR model to calculate the global 
exposure of a UCITS. The goal is to ensure that the 
model is conceptually sound and captures adequate-
ly all material risks. This independent validation has 
a broader perspective than backtesting: it also covers 
the scope, specification, implementation and use of 
the model.

Validation would for instance need to answer the 
question: is the model appropriate for the type of 
portfolio, the type of data, and the systems in place? 
The (internal or external) party performing the val-
idation must be independent of the model building 
process.

Backtesting, on the other hand, is a quality control 
process that does not primarily deal with how VaR 
numbers were generated, but focuses more narrowly 
on one question: is the model able to accurately re-
flect the observed reality? It is only when the answer 
is negative that backtesting raises questions relating 
to model validation.

CESR guidelines further specify: in addition to this 
initial independent validation, Risk Management 
should perform ‘ongoing validation of the VaR mod-
el (this includes, but is not limited to back testing 
[…]) to ensure the accuracy of the model’s calibra-
tion. The review should be documented. Where 
necessary, the model should be adjusted’.

In short, backtesting is part of (and the first step in) 
the ongoing validation of the model by Risk Man-
agement, but not necessarily of the independent 
initial model validation.

Clean/dirty 
backtesting

Backtesting is called:

• Dirty when it compares the VaR measures 
with effectively observed returns, and

• Clean when it compares the VaR with 
hypothetical historical returns, i.e. the daily 
returns that would have been observed for 
each day if portfolio positions had been kept 
unchanged from the previous day.

Both backtesting approaches are accepted by the 
CSSF and ESMA. The explanatory text included in 

3 The CESR guidelines 10-788 specify in Box 22, point 3 that a significant change could relate to the use of a new product by the 
UCITS, the need to improve the model following the back testing results, or a decision taken by the UCITS to change certain 
aspects of the model in a significant way.

4 An arguable theoretical superiority of clean backtesting needs to be counterbalanced by the technical difficulties implied. 
Nevertheless, in some specific occurrences (e.g. for portfolios with a high daily turnover), clean backtesting might be the only 
route to explaining a model overshooting.

ESMA guidelines (item 58) states that ‘back testing 
is ideally performed on the hypothetical changes 
in the portfolio’s value’ (i.e. clean backtesting). In 
practice, most UCITS have a relatively low portfo-
lio turnover compared to the bank trading desks 
for which the VaR was originally developed. Given 
this, the additional accuracy and insight that can be 
gained from clean backtesting is rarely perceived to 
justify the additional costs of computing and main-
taining hypothetical returns, so that dirty backtest-
ing is widely accepted4.



98

comprehensive toolbox. They are all ‘model-free’ in 
the sense that they apply to any type of VaR model, 
without directly addressing the models’ assump-
tions. Despite their limitations, they provide a good 
starting point to a more comprehensive analysis of 
backtesting.

Finally, only the main drivers of the tests are re-
viewed here, in order not to overload the paper with 
statistical considerations, notations and details. For 
interested readers, mathematical formulas are pre-
sented in the annex, and comprehensive descriptions 
and reviews are included in the referenced papers.

A hit is not worrying by itself: a correctly calibrated 
VaR 99% model generates about 1 hit every hun-
dred observations and, on average, 2.5 per year (250 
observations for daily observations). But given that 
our testing sample is subject to random fluctuations, 
we will often observe less than 2 or more than 3 hits 
over the past year, even if our VaR model is correct. 
In fact, given a correctly calibrated VaR 99% model 
and 250 observations, we can expect to count hits 
with the following probabilities6:

I. A primer on backtesting

Counting the hits Whether they are performed on clean or dirty 
data, most basic backtesting procedures start with 
a counting exercise. This first step is the only one 
specifically required by UCITS regulations. Recall 
that VaR estimates the (worst) potential (mark-to-
market) loss at a given confidence level (probability) 
over a specific time horizon5. Whenever the daily 
P&L is worse than the VaR figure computed for that 
day, we observe a “hit” (also called exception, outli-
er, exceedance, violation or overshooting). The usual 
backtesting process starts with counting these.

Number of hits 0 1 2 3 4 >4

Likelihood 8.1% 20.5% 25.7% 21.5% 13.4% 10.8%

For UCITS calculating their VaR at the 99% con-
fidence level, the CESR guidelines and the CSSF 
circular indicate 4 hits in the most recent 250 busi-
ness days as the critical threshold. Above 4 hits, a 
report must be submitted at least quarterly to senior 
management, containing an analysis and explana-
tion of the exceptions and a statement of remedial 
actions, if any. As the table above makes clear, even 
if the VaR model is correct for the portfolio where it 
is applied, this threshold will be exceeded more than 
10% of the time7. This helps explain why discus-
sions on this topic recur with such regularity.

The painfully frequent handwringing about VaR 
exceedances explains the growing consensus in the 
industry: backtesting cannot be limited to the basic 
counting exercise required by regulations. Fortu-
nately, in recent decades the academic literature has 
developed a wide array of tests based on statistical 
inference.
While these statistical tests are too many and too 
complex to present them all here, the most usual and 
widespread are described in the following section.

5 By some definitions, this estimation should correspond to ‘normal market conditions’.
6 The theory behind this table is explained in Section II under ‘Unconditional Coverage Tests’.
7 Some UCITS use a VaR 95% model, implying one hit every 20 observations on average. Assuming that the VaR model is cor-

rect, they will observe more than 16 hits about 12.5% of the time and more than 17 hits about 8% of the time. These UCITS 
should arguably be allowed to apply a >16-hit threshold for compliance with the CESR guidelines.

II. Statistical backtesting techniques

Statistical tests are used to assess the quality of VaR 
measurements in a finite sample inherently subject 
to randomness. Most of them qualify the number 
and/or pattern of exceptions. This allows their users, 
beyond regulatory requirements, to define accept-
able zones and to raise red flags when the model 
performs outside of these zones. Some caveats are in 
order at this point:

First, test results need to be completed by further 
analysis: for instance, the reasons behind the occur-
rence of outliers need to be investigated and docu-
mented. We cover this in the next section.

Furthermore, the tests listed in this section are 
just examples that may be used as part of a more 

How powerful is 
your test?

When to reject a 
model?

All statistical backtests ask the same question: given 
a certain significance level, should we reject the “null 
hypothesis” that our model adequately forecasts the 
losses distribution, or exhibits a specific property? 

The choice of significance level is related to an 
assessment of the costs of making two types of mis-
takes: we could reject a correct model (type I error) 
or we could fail to reject an incorrect model (type II 
error).

Decision
Not reject

Correct
Model

Incorrect

Type II error

OK

OK

Type I errorReject

There is a trade-off between the two: increasing the 
significance level generates more type I errors but 
less type II errors, and vice versa. In risk manage-
ment, type II errors may be very costly, so that a 
significance level of 10% may be appropriate. 

This seems to match CESR’s view: as mentioned 
above, for a correctly calibrated VaR 99% model, 
the probability of observing more than 4 hits (i.e. 5 
hits or more) in the last 250 days is 10.8%.

Ideally, we want to minimise the likelihood of both 
types of errors to obtain a more powerful test. The 
simplest way to get there is to work with more data 
by:

• Using the longest possible P&L series (ideally 
since the last material change to the model), 
and/or

• Decreasing the VaR confidence level: this will 
generate more hits and therefore more pow-

erful tests (but without alleviating the need 
to count the hits vs. VaR 99% for regulatory 
purposes).

The other way to perform more powerful tests is to 
use procedures that have been shown to more accu-
rately separate correct from incorrect VaR models. 
This comes at a cost: more powerful tests are usually 
more complex.
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days in the sample. The complete test procedure is 
described in Annex 1. In a nutshell, we first define 
the highest acceptable number of hits given the sam-
ple size (and VaR confidence level, i.e. 99% in our 
case), and then compare it to the observed number 
of hits.

Following this procedure, we quickly find that using 
only 250 observations and a 99% confidence level, 
“more than 5 observations” should lead to rejecting 
the null hypothesis of adequate unconditional cov-
erage, because for a VaR model with a 1% hit rate 
this should happen about 10.8% of the time. But if 
we decide not to reject it, how confident can we be 
that this decision is the right one? Not very, as the 
following graph exemplifies:

In other words, any two elements of the hit 
sequence must be independent of each other. 
Breaches of this property should influence 
our assessment of risk. For instance, if the 
backtest of the 99% VaR yields 1% outliers, 
but these are concentrated on a two-week 
period, then the model is less responsive to 
market changes (and the portfolio may be 
much riskier) than a correct model generat-
ing violations that occur randomly through 
time. Therefore, VaR models which generate 
violation clusters should be rejected.

Campbell (2005) points out that the unconditional 
coverage and independence properties jointly de-
termine the accuracy of a given VaR model. A VaR 
model that satisfies only one property or the other 
will result in an inaccurate description of the risk 
exposure. Accordingly, most statistical procedures 
used in backtesting serve to test the independence or 
the unconditional coverage property, or even both, 
as described below.

II. Statistical backtesting techniques

Backtesting 
properties

In a much-cited paper, Christoffersen (1998) ex-
plained for the first time what is now considered 
obvious: any model to forecast intervals, such as a 
VaR model, is correct if the exceptions it generates 
are not only quantitatively in line with its confi-
dence level, but also independent of each other. In 
other words, a VaR model should jointly satisfy two 
conditions:

• Unconditional coverage (UC): the observed 
proportion of hits (coverage) should not be 
significantly different from the theoretical 
proportion, e.g. typically 1% under Luxem-
bourg regulation. Significantly more frequent 
exceptions suggest that the reported VaR 
figures systematically understate the fund’s 
actual level of risk. Conversely, too few 
violations suggest an overly conservative VaR 
measure.

• Independence (IND): This property concerns 
not the frequency, but the sequence of outli-
ers. The fact that an outlier is observed today 
(or not) should not affect the probability of 
observing an outlier on the following days. 

Elementary 
statistical tests

Most statistical methods used in practice examine 
the properties presented above. They provide a met-
ric to evaluate assertions such as ‘The frequency of 
outliers is close to 1%’ and ‘Outliers are distributed 
independently’.

 Fund A
Number of observations 320
Number of outliers T1 5

To illustrate the need for a metric, consider Fund A 
and Fund B monitored with VaR 99%. Here are the 
results of the last 320 observations:

 Fund B
Number of observations 320
Number of outliers T1 18

For both funds, the rates of outliers (at 1.6% and 
5.6% respectively) are above the 1% threshold 
corresponding to the 99% confidence level. Just how 
high is too high? This is the main question addressed 
by unconditional coverage tests. 

They examine whether the number of exceptions 
observed in the testing sample are in line with the 
confidence level chosen for the VaR.

Unconditional coverage test – one-tailed test

To test the unconditional coverage of a VaR 99% 
model, the most intuitive approach is to consider 
each trading day as a Bernoulli trial with a 1% 
probability of a hit. Then, if the model is correct, 
the number of hits follows a binomial distribution, 
characterised by a hit rate of 1% and the number of 
observations in the sample.

Now let’s assume that, as is often the case, we are 
only concerned about “too many”, but not “too 
few” exceptions to the VaR. In other words, we only 
want to conduct a “one-tailed” test. Then our null 
hypothesis is that the number of hits is not signifi-
cantly higher than 1% times the number of trading 

Here we clearly see that if our one-year data con-
tains less than five hits (i.e. we will not reject the null 
hypothesis), especially if it contains three or four 
hits, we are still far from sure that our VaR model 
has a 1% hit rate. It may in fact have, for example, a 
2% hit rate instead. In other words, it may in fact be 
a VaR 98% model! If that were the case, observing 
less than five hits would occur with a 44% proba-
bility8. 

Hence, a non-rejection should not really reassure us, 
because the default VaR confidence level and num-
ber of observations mentioned by regulations lead to 
a test of unconditional coverage that lacks in power.

Compare this with the situation when using 5 years 
of data, i.e. about 1250 observations:

8 Or a VaR model with a 3% hit rate (13% probability) or with a 4% hit rate (3% probability), etc.
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day. If the VaR measure is correct, then the probabil-
ity of violating today’s VaR should be independent 
of whether yesterday’s VaR was violated or not. As 
noted by Campbell (2005), if the likelihood of a 
VaR violation increases on days following previous 
VaR violations, then the VaR directly after a viola-
tion should be increased.

The Markov test is carried out by creating a 2x2 
contingency table that records VaR violations on 
consecutive days:

Independence testing

A model can continue to perform handsomely in 
tests of unconditional coverage while the fund is ex-
periencing a string of VaR violations that spiral into 
catastrophic losses. We therefore need a test that will 
reject a VaR model generating clustered violations9.

Christoffersen (1998) focuses on unusually fre-
quent consecutive hits. His Markov test10 examines 
whether the likelihood of a VaR violation depends 
on a VaR violation being observed on the previous 

Unconditional coverage test – two-tailed 
tests

Given enough data on daily returns, it is also 
possible to test whether a VaR model generates not 
just too many hits, but more generally a quantity 
of hits that is not in line with its confidence level: 
too many OR too few hits. Such a ‘two-tailed’ test 
allows its user to estimate whether the VaR model 
systematically underestimates or overestimates risk. 
In this case, the 10% significance level must be split 
between the two tails (5% on each side) and the pro-
cedure in Annex 1 must be amended accordingly.

Kupiec (1995) provides a more elegant, widely used 
two-tailed test. Here we examine whether the hit 
rate, called “proportion of failures” or POF, is in 
line with the VaR model’s α (one less the VaR confi-
dence level). 

The test statistic is based on a log-likelihood ratio, 
an approach which has been shown to be especially 
powerful to distinguish between two models with 
no unknown parameters. The null hypothesis, test 
statistic and decision rule are presented in Annex 2.

Test of unconditional coverage over a range 
of alpha levels – Pearson´s Q test

Tests of unconditional coverage performed for a sin-
gle confidence level (i.e. a single point of the return 
distribution) are not very powerful for the small 
samples typically used in VaR backtesting. As we 
have seen above, the risk of type 1 or type 2 error 
is quite high – especially when the VaR confidence 
level is high and the number of hits accordingly low. 
Therefore, tests that simultaneously cover multiple 
confidence levels have been proposed. CSSF also 
guided towards testing various confidence intervals 
in its 2014 annual report. Pearson’s Q test requires 
users to divide the unit interval into different sub-in-
tervals, such as [0.00,0.01[, [0.01,0.05[, [0.05,0.10[, 
[0.10,1.00] for instance, considering that we are 
only interested in measures over the 10th percentile. 

This results in four separate bins on the unit inter-
val. After choosing the partition, we count the num-
ber of VaR violations that occur within each bin. 
For example, the [0.01,0.05[ bin records the number 
of days on which a loss occurred that exceeded the 
5% VaR, but not the 1% VaR. Given the number 
of hits that have occurred within each bin, the test 
statistic is calculated as detailed in Annex 3, which 
also provides a decision rule.

In his review of VaR models, Campbell (2005) 
explains that tests that examine multiple quantiles 
exhibit a higher detection power most clearly when 
applied to VaR models that understate the risk most 
severely.

Here, using the procedure in Annex 1, we calculate 
16 as our highest acceptable number of hits. Now 
the probability of observing so few hits for a VaR 
model with a 2% hit rate is only about 4%. That is 
a lot less than 44%. This simple example illustrates 
how using more data may considerably reduce the 
probability of a type II error. This is also clearly vis-
ible from the much lower degree of overlap between 
the two distributions in our second chart.

Hence the advantage of testing the VaR model using 
the longest possible data history in addition to 
regulatory requirement (most recent 250 days). This, 
however, should not lead to the inclusion of data 
from a previous version of the model! The loss in 
backtesting power is part of the cost of significantly 
amending VaR models.

Extending the historical window does though come 
with costs: when running or testing risk numbers, 
the risk manager needs to find an adequate balance 
between including additional data in order to im-
prove the representativeness of the sample, keeping 
data representative of current market conditions 
(changes to the model, capturing emerging trends 
or patterns, etc.) and the burden of maintaining and 
manipulating larger data sets. 

As increasing the data set could reduce the risk of 
some errors by e.g. making the sample reviewed 
more representative of the population, it might, if 
unduly handled, increase the probability of other 
errors by masking the impact of changes (model, 
recent trends, etc.).

For models with short histories, an alternative is to 
also compute the VaR 95% and to conduct back-
tests on their time series in addition to the VaR 99% 
series.

Let’s take 10% as our significance level and get back 
to Fund A and Fund B. Using the procedure in An-
nex 1, we find that for 320 observations, the highest 
acceptable number of hits is 5, exceeded only 10.4% 
of the time.

For fund A, the number of hits is just at the upper 
end of the acceptable range: we do not have suffi-
cient evidence to reject the the null hypothesis that 
the VaR model is in line with the 99% confidence 
level.  Failing to disqualify the model accuracy leads 
us in practice to accept it until evidence to the con-
trary emerges.

No so for fund B, however. 18 hits is clearly out of 
range. In fact, pursuing the same procedure until 18, 
we find only a 6.8 x 10-9 probability of observing 
18 or more hits beyond the VaR 99% among 320 
observations if the model were correct. Therefore, 
we can reject the null hypothesis that our VaR mod-
el provides adequate unconditional coverage.

9 Which might be particularly relevant for financial variables that exhibit cyclicality and time changing risk levels.
10 To be exact, we should say ‘Test of the transition probabilities of the Markov chain’. We opted for the simpler but not totally 

accurate ‘Markov test’ formulation.

II. Statistical backtesting techniques

It-1=0 It-1=1

It=0 N1 N2 N1+N2

It=1 N3 N4 N3+N4

N1+N3 N2+N4 N

Where It is a binary function of value 1 if an outlier 
is recorded at date t, and 0 otherwise. This function 
is often referred to as the ‘hit function’.

The proportion of violations on the days that follow 
a day when no violation occurred, π0 = N3/(N1+N3), 
should be the same as the proportion of violations 
that immediately follow another violation, 
π1 = N4/(N2+N4). Thus, our null hypothesis is π0 = 
π1.

To perform this test, we also define our propor-
tion of violations (hit ratio) as π = (N3+ N4)/
(N1+N2+N3+N4), and then compute our test statistic, 
just like in Kupiec’s POF test, as a likelihood ratio. 
The statistic and associated decision rule are present-
ed in Annex 4.

Let’s illustrate again with Funds A and B.

 Fund A
N1 310
N2 5
N3 5
N4 0

For fund A, no sequence of outliers is observed. 
Since N4 = 0, π1 = 0 as well, so that the denominator 
of the likelihood ratio reduces to (1 - π0)

N1 π0
N3. As 

expected, the test statistic (at 0.1587) is below the 

critical value for any of the usual significance levels. 
Therefore, the hypothesis of independence cannot be 
rejected.

 Fund B
N1 292
N2 10
N3 10
N4 8
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While these tests are not a substitute for more stan-
dard backtesting procedures, they are useful tools to 
select or benchmark competing VaR models.

Conclusion

Testing for both unconditional coverage and inde-
pendence will result in one of the following out-
comes:

• Reject (the null hypotheses for) both 
properties,

• Reject one property, but not the other, or
• Not reject any of these properties.

The two former outcomes warrant further probing 
and analysis: either the model is flawed and needs to 
be adapted/enhanced as it doesn’t assess risk prop-
erly, or some other implicit assumption has been 
breached. 

11 An exhaustive review of the existing VaR testing procedures can be found in Nieto and Ruiz (2016).

Unlike Fund A, Fund B displays 8 instances of 
consecutive outliers. At 26.02, the test statistic is an 
extreme value of its probability distribution under 
the null hypothesis, exceeded only with a proba-
bility of 3.4 x 10-5 %. Therefore, we can reject the 
null hypothesis of independence at any of the usual 
significance levels.

Further Tests of Independence

An obvious shortcoming of the Markov test is that it 
will not detect hit clusters that contain no, or only a 
few, consecutive hits. To address this, Christoffersen 
& Pelletier (2004) propose another test of indepen-
dence, based on counting the days between hits (a 
measure called “duration”). The null hypothesis 
here is that, given a correctly specified VaR model 
with coverage rate α, the expected duration until 
the next hit should be a constant 1/α days, whether 
the last hit occurred recently or in the distant past. 
Compared to the Markov test, however, the original 
duration-based test of independence by Christof-
fersen & Pelletier involves more sophisticated, less 
transparent computations which make its use in risk 
reporting problematic. This is also true for the other 
duration-based tests of independence that have been 
proposed so far by academics.

Other approaches to testing for independence 
include testing whether the hit function verifies the 
properties of a martingale difference (Hurlin & 
Tokpavi, 2006), or whether current violations can 
be linked by linear regression to past violations 
(Engle and Manganelli, 2004). Like duration-based 
tests, they offer higher power at the cost of higher 
complexity and opacity.

Joint test of Unconditional Coverage and 
Independence

Further to the Markov test for independence, if 
the VaR measure also exhibits the unconditional 
coverage property then the proportions of violations 
should be equal not only to each other, but also 
to the “hit rate” and to the likelihood associated 
with the VaR1-α confidence level (e.g. α=1% for VaR 
99%). In other words, our null hypothesis here is:

N3/(N1+N3) = N4/(N2+N4) = (N3+N4)/N = α.

The test statistic for this test is simply the sum of the 
test statistics for the Kupiec’s POF test and Chris-
toffersen’s Markov test, as defined in annex 2 and 
annex 4. The decision rule for this test is explained 
in annex 5.

There is a hidden cost to testing both properties 
simultaneously: for reasons explained in annex 5, a 
good unconditional coverage could mute the effects 
of a lack of independence or vice-versa. 
As Campbell (2005) puts it, “The fact that one of 
the two properties is satisfied makes it more difficult 
for the joint test to detect the inadequacy of the VaR 
measure”. Therefore, standalone tests of uncondi-
tional coverage and independence must also be per-
formed whenever a VaR model passes the joint test.

Following our examples, we can show that the test 
statistics is high enough in the case of Fund B to 
reject the null hypothesis that the model has ade-
quate unconditional coverage and independent hits. 
For fund A, on the other hand, the test statistics are 
too low to reject the null, so that further separate 
tests of independence and unconditional coverage 
are needed.

Further types of tests11

One characteristic of all the tests presented above 
is that they give every exceedance the same weight, 
whether it was very close to the VaR or wiped out a 
significant portion of the fund. The size of exceed-
ances is just irrelevant in the definition of the VaR. 
In the words of hedge fund manager David Einhorn, 
a 99% Value at Risk calculation does not evaluate 
what happens in the last one percent… This is like 
an air bag that works well all the time except when 
you have an accident.

To help alleviate the unease on this topic, Lopez 
(1998) developed a test that considers the size of ex-
ceedances. The practical problem when implement-
ing it is to decide how large a loss is too large.

Finally, distribution tests apply to the VaR method-
ologies that are based on a distributional assump-
tion, and test whether this assumption is verified 
at all levels of the distribution, not just the 95% 
or 99% level. Unlike all the “model-free” methods 
presented above, these tests are model-specific.

The latest developments in VaR models’ perfor-
mance evaluation have been focused on comparing 
alternative VaR models rather than evaluating the 
models’ absolute performances individually. These 
new generation tests allow to identify the “best” 
VaR model with a given confidence level. For that 
purpose the tests mainly rely on loss functions 
specially designed to account for the frequency and 
magnitude of exceptions. 

The fact that a model failed the backtesting pro-
cedures doesn’t necessarily mean that the model is 
faulty and should be replaced. Most probably, such 
an outcome points to a poorly specified or even a 
mishandled model needing some tailoring to specific 
situations. 

In the next section, we offer some avenues of reflec-
tion and analysis that could be exploited to foster 
a better understanding of the practicalities of the 
VaR model used. A thorough understanding of this 
model allows the risk manager to better grasp its 
limitations and the improvements required when the 
backtesting process flags potential model weaknesses 
or misuses.

II. Statistical backtesting techniques
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Additional areas of ad-hoc investigation may in-
clude:

• Depending on the VaR model, it may be pos-
sible to use tailored backtesting procedures 
that examine the model’s underlying assump-
tions (unlike the “model-free” backtesting 
methods described here).

• Graphical checks, illustrating for instance 
the timing of VaR exceedances to check for 
any form of clustering not identified by the 
Christoffersen test described above.

• In addition to VaR results, risk managers 
need to pay attention to what happens in 
the tail. For instance, very large exceedances 
need to be given attention, especially since 
the highest VaR limit utilisation needs to be 
disclosed as part of the annual risk report.

• Backtesting results at the industry level could 
be considered to establish (dynamic) policies 
and limits.

Finally, the exclusive focus on “too many” excep-
tions may hide a whole set of VaR models generat-
ing too few exceptions. The absence of exceptions 
also need to be considered by risk managers to 
revisit their models.

III. Beyond statistical analysis

As suggested in Section I when defining backtesting, 
users should understand the limitations inherent in 
each model.

The statistical approaches outlined above will help 
to raise red flags. Pinpointing the exact problem, 
however, will require the user to delve further into 
the details and practicalities underlying the model. 
This approach needs to be further formalised via the 
construction of a comprehensive toolkit allowing re-
ality checks on all aspects and (explicit and implicit) 
modelling assumptions. 

Such a toolkit will uncover problems and allow its 
users to plan for corrective measures, or at least 
factor any identified bias into the decision-making 
process. The goal is to set up indicators allowing 
model users to adapt these models before they fail.

The first areas to investigate on an ongoing basis 
include:

• Review moves of the underlying risk factors;
• Check for large changes in positions;
• Probe for event risk that might not have been 

captured (market-impacting events such as 
FED tapering, Lehman bankruptcy, Fukushi-
ma meltdown, etc.); and

• Contrast backtesting results to expected 
shortfall and stress-test results to gauge result 
plausibility.

Both aspects will be covered in upcoming papers 
that will round out this series on VaR backtesting.
Please note that ALFI-ALRiM, while confident of 
the broad aims and principles highlighted in this 
white paper, does not endorse the practical use and 
specific implementation of the described principles 
and tools or associated spreadsheets. It is strongly 
advised to fully review and test the material before 
using it for professional purposes. ALFI, ALRiM 
and group members therefore cannot be held liable 
for any error, imprecision or mistake endured fol-
lowing the use of the provided material.

IV. Final comments

Throughout this paper, we aimed to provide ele-
mentary information on how to define and set up 
a practical backtesting framework. We voluntarily 
restrained our scope to the technical and practical 
issues and did not cover:

• How to respond to the apparent failure of a 
VaR model, especially when too many excep-
tions occur;

• The governance arrangements that backtesting 
need to be embedded in.
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Glossary

Backtest Process of backtesting

Backtesting Formal statistical framework that consists in verifying if actual 
trading losses are in line with projected losses. This involves a 
systematic comparison of the history of model-generated VaR 
forecasts with actual returns.

Christoffersen test This statistical test examines a version of the independence 
property, whereby independence is only assessed by reference 
to consecutive VaR violations.

Clean backtesting Use of the hypothetical changes in the portfolio’s value for 
backtesting. Hypothetical changes are the changes in value of 
the portfolio from one day to the next assuming unchanged 
positions.

Clusters Instance of multiple VaR violations occurring within a tight 
time interval.

Conditional 
coverage (CC)

CC = UC + IND

Conditional coverage requires that both properties of uncondi-
tional coverage and independence be jointly validated.

Further to the average number of exceptions being correct, 
these occur independently throughout the observed sample. 
This means that for any given day, the probability of oc-
currence of an exception is the same, whether an exception 
occurred previously or not.

Cornish-Fischer 
transformation

Technique for approximating an empirical distribution by 
integrating not only the information conveyed by the mean and 
standard deviation of the distribution but also its skewness and 
kurtosis.

Dirty backtesting Use of the effective changes in the portfolio’s value for backtest-
ing. Effective changes are the changes in value of the portfolio 
from one day to the next (including the impact of transactions).

Error
Type I error Rejecting a correct model

Type II error Not rejecting an incorrect model

The choice of significance level is related to an assessment of 
the costs of making two types of mistakes: rejecting a correct 
model (type I error) or accepting an incorrect model (type II 
error). There is a trade-off between both types of error, since 
increasing the significance level implies more type I errors but 
less type II errors, and vice versa. In risk management, type II 
errors may be very costly so that a significance level of 10% 
may be appropriate.

Exception One-day change in the portfolio’s value that exceeds the related 
one-day value-at-risk measure.

Exponential 
weighting

Technique used to give more weight to recent information than 
to older information. Typically, historical VaR uses equal-
ly-weighted P&L’s whereas parametric methodologies tend to 
use weighted P&L’s. The idea between this weighting is that re-
cent information conveys more relevant information for today’s 
risk measure.

Global exposure Global exposure is a measure designed to limit either the incre-
mental exposure and leverage generated by a UCITS through 
financial derivatives instruments (including embedded deriva-
tives), or the market risk of the UCITS portfolio. 

Authorized measures of global exposure include the commit-
ment approach and the (absolute or relative) value-at-risk 
approach.

Heteroscedasticity Refers to the fact that the variance of a random variable is 
not constant or that the variances of several random variables 
differ. The presence of heteroscedasticity might induce bias in 
models when trying to project future values (statistical infer-
ence). This is one of the underpinnings of using daily returns 
(or returns of non-overlapping periods) in VaR computation.

Hit See ‘Exception’

i.i.d. Short for independent and identically distributed

Independence (IND) This refers to the capacity of the model to integrate informa-
tion so that outliers do not cluster together.

In Christoffersen’s 1998 version of the concept, the indepen-
dence of two consecutive elements of the hit sequence means 
that the probability of observing an outlier on any day should 
not be affected by the occurrence (or not) of an outlier on the 
previous day.

Independent and 
identically 
distributed returns

Each series of return has the same probability distribution as 
the others and all are mutually independent. This widely-used 
assumption simplifies the aggregation of series (foundation of 
the central-limit theorem) and allows scaling (square root of 
time rule). Such a process is typical of e.g. multiple draws using 
a roulette or a stochastic Wiener process. 

This assumption is not empirically verified. Although it might 
be reasonable for consecutive daily returns, it gets shakier 
as the analysis horizon is expanded (among others, because 
returns exhibit heteroscedasticity).

Inference statistical 
testing

Testing of a hypothesis through procedures used to draw con-
clusions from datasets arising of random variables.

Kupiec test This statistical test focuses exclusively on the property of 
unconditional coverage (UC), testing if the reported frequency 
of VaR outliers is significantly more or less than the theoretical 
proportion.
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Kurtosis Measure of the ‘peakedness’ of the probability distribution. 
Higher kurtosis means that more of the variance is the result of 
infrequent extreme deviations. This is the moment of order 4 
of a distribution. A normal distribution has a kurtosis of 3 or 
excess kurtosis of 0.

Leptokurtic A distribution with (positive) excess kurtosis. In terms of shape, 
a leptokurtic distribution has a more acute peak around the 
mean (that is, a lower probability of values near the mean) than 
a normal distribution and fatter tails (that is, a higher probabil-
ity of extreme values than a normal distribution).

Leptokurtic series are also known as being ‘fat-tailed’.

Mapping Mapping is understood as the process of modelling the be-
haviour of a given instrument by a restricted amount of risk 
factors. For instance, this could be the definition of a yield 
curve using a finite number of points and the specification of an 
interpolation methodology for intermediate maturities.

Markov test The Markov test is used to test the independence (IND) proper-
ty of VaR models. It examines whether the likelihood of a VaR 
violation depends on a VaR violation being observed on the 
previous day. The idea is to establish a test which will be able 
to reject VaR with clustered violations.

Model validation Validation has a broader perspective than backtesting in the 
sense that validation will cover additionally the scope and use 
of the model. Validation would for instance need to answer to 
the question: is the model appropriate for the type of portfolio, 
the type of data and the systems in place?

Null hypothesis The null hypothesis typically corresponds to a general or de-
fault position. For example, the null hypothesis might be that 
there is no relationship between two measured phenomena. It is 
important to understand that the null hypothesis can never be 
proven. A statistical test can only reject a null hypothesis or fail 
to reject it.

E.g. for backtesting, the null hypothesis is usually that the mod-
el is correct. Rejecting the null hypothesis leads the risk analyst 
to suppose that the model is not correct.

Outlier See ‘Exception’

Overshooting See ‘Exception’

POF Proportion of failures. Kind of statistical test used to test an 
assumption such as adequate coverage. Kupiec is part of this 
family of tests.

Reactivity Capacity of a model to incorporate the most recent market 
information in its predictions.

Glossary

Sampling bias The selection of a given sample on which to base statistical 
measures or inference analysis could induce a bias as this sam-
ple may not be representative of the population and therefore 
“real” expected values.

This is highly relevant for VaR computations as all computa-
tions are based on some sort of sampling. Furthermore, users 
need to allow a trade-off between increasing the sample size 
to achieve statistical relevance and making optimal use of the 
most recent and relevant information by reducing the sample 
size.

Skewness Measure of the asymmetry of the probability distribution. This 
is the moment of order 3 of a distribution.

Qualitatively, a negative skew indicates that the tail on the left 
side of the probability density function is longer than the right 
side and the bulk of the values (possibly including the median) 
lie to the right of the mean. A positive skew indicates that the 
tail on the right side is longer than the left side and the bulk 
of the values lie to the left of the mean. A zero value indicates 
that the values are relatively evenly distributed on both sides 
of the mean, typically but not necessarily implying a symmetric 
distribution. A normal distribution has a skew of 0.

Unconditional 
coverage (UC)

This refers to the capacity of the model to correctly predict the 
probability of a VaR violation: the fraction of outliers should 
not be significantly different from the theoretical proportion 
(e.g. typically 1% under Luxembourg regulation).

Value-at-Risk A measure of the potential loss to a portfolio due to market 
risk. More specifically, VaR measures the potential mark-to-
market loss at a given confidence level (probability) over a spe-
cific time horizon (assuming, under certain definitions, “normal 
market conditions”.

VaR Short for Value-at-Risk

Violation See ‘Exception’
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Annex

Annex 1

Procedure for a one-tail test using the binomial distribution

1) Choose a significance level for the test (unrelated to the VaR confidence level). The more data is 
available, the more powerful the test, and the less the significance level needs to be.

2) For each integer x, starting from 0:
a) Compute the probability of experiencing x exceptions if the model is correct, using either:

- The BINOM.DIST (x, n, p, false) formula in Excel, or
- The probability mass function for the binomial distribution:

where:
x is the number of exceptions, 
p is the probability of an exception for a given VaR confidence level,
n is the number of trading days in the sample, and
  is the binomial coefficient with value               (= COMBIN (n, x) in Ex-
cel).

b) Compute the probability of observing k or more hits, given a correct model, as the sum of the 
outputs from step 2a) for all x between 0 and k-1:

Alternatively, steps 2a) and 2b) can conveniently be summarised by the cumulative version of 
the Excel function. The probability of observing k or more hits is then [1–BINOM.DIST(k-1, 
n, p, true)].

3) Repeat steps 2a) and 2b) until the probability of observing k or more hits is below, or just slightly 
above, the significance level chosen under step 1). Then k-1 qualifies as the highest acceptable num-
ber of hits.

4) Count the number of hits in the sample. If this number exceeds the highest acceptable number de-
fined under 3), reject the null hypothesis and conclude that the model provides inadequate uncondi-
tional coverage. Otherwise do not reject the null hypothesis.

Annex 2

Two-tailed test of unconditional coverage – Kupiec’s test

Given N observations and n hits, our null hypothesis is n/N= α. The test statistic is computed as: 

If the VaR model is accurate, and given a sufficiently large sample, LRPOF is distributed like a X2(1)(12).

Therefore, using the critical values from the x2(1) distribution, we reject the null hypothesis:

- At the 10% significance level if –2ln(LR) ≥ 2.706,
- At the 5% significance level if –2ln(LR) ≥ 3.841, and
- At the 1% significance level if –2ln(LR) ≥ 6.635.
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n ppCpnxP −−= )1(),(
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nC n!
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1-∑k-1 P(x| n,p).x=0

LRPOF = -2ln 
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N N1-( () )

n (N-n)( )

12 ‘X2(1)’ reads Chi-Square distribution with one degree of freedom

Annex 3

Pearson’s Q test of unconditional coverage at multiple levels

Given the number of hits that have occurred within each bin, the test statistic is calculated as follows:

Where:
N(li,ui) is the number of hits within sub-interval (li,ui),
N is the total number of observations, and
(ui - li)is the width of the sub-interval.

Under the null hypothesis that the VaR model is accurate, Q is distributed like a                 where k is the 
number of bins used in the test13.

Annex 4

Christoffersen’s independence test (1998 – consecutive violations only)

The test statistic is computed as:

Where:
- N1 = number of non-violations on the days following a non-violation
- N2 = number of non-violations on the days following a violation
- N3 = number of violations on the days following a non-violation
- N4 = number of violations on the days following a violation
- π0 = N3/(N1+N3)
- π1 = N4/(N2+N4)
- π = (N3+ N4)/(N1+N2+N3+N4) (hit ratio)

This is approximately centrally chi-squared with one degree of freedom. Therefore, using the critical values 
from the X2(1) distribution, we can reject the null hypothesis (that the probability of violation is the same 
whether the previous day was a violation or not) using the same critical values as presented in Annex 2 for 
Kupiec’s POF test.

( )12 −kχ

13 To wit, ‘x2(k-1)’ reads Chi-Square distribution with k-1 degrees of freedom. This is how the sum of the squares of k-1 independent standard random 
variables is distributed.

LR = -2ln
(1-π)(N �+N �) π (N � + N�)

(1-π0)
N � π0

N �  (1-π1)
N � π1

N � ( )
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Annex 5

Joint test of unconditional coverage and independence

Since two distinct equalities are being tested here, the test statistic (the sum of the test statistics for Kupiec’s 
POF test and Christoffersen’s 1998 test of independence) follows a chi-square distribution with not one but 
two degrees of freedom.

Accordingly, the null hypothesis will be rejected:

- At the 10% significance level if –2ln(LR) ≥ 4.605,
- At the 5% significance level if –2ln(LR) ≥ 5.991, and
- At the 1% significance level if –2ln(LR) ≥ 9.210.

Note how these critical values are higher than the corresponding values for Kupiec’s POF test, which are 
also used for Christoffersen’s Markov test (see annex 2 and annex 4). In practice, this leads to a lower rate 
of rejection even for VaR models that generate more hits, or more consecutive hits, than a correct model. In 
other words, joint testing comes with a higher likelihood of a type 2 error.

Annex
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Cheat sheet - basics of backtesting

Risk managers and conducting persons in charge of risk management may use the following checklist to (i) 
verify compliance with regulatory requirements, (ii) check they have set-up adequate ongoing testing.

Regulatory Requirements Other Industry Practices

VaR Model Specifications Backtesting Programe

According to Box 15 of CESR 10-788, VaR needs to be computed with:  

• One-tailed confidence interval of 99%.
• Holding period equivalent to 1 month (20 business days).
• Effective observation period (history) of risk factors of at least 1 year 

(250 business days) unless a shorter observation period is justified by 
a significant increase in price volatility (for instance extreme market 
conditions).

• Quarterly data set updates, or more frequent when market prices are 
subject to material changes.

• At least daily calculation.

A confidence interval and/or a holding period differing from the default param-
eters may be used provided the confidence interval is not below 95% and the 
holding period does not exceed 1 month (20 days).

According to Box 18 of CESR 10-788, the backtesting programme monitors the 
accuracy and performance of VaR model (i.e. prediction capacity of risk estimates). 
Main building blocks are:

• Compare for each business day the one-day value-at-risk measure generated 
by the model (VaR) for the end-of-day positions to the one-day change of the 
portfolio value (P&L) by the end of the subsequent business day.

• Determine and monitor ‘overshootings’ i.e. cases where the P&L exceeds the 
related one-day VaR.

• Back testing should be carried out at least on a monthly basis, subject to 
always performing retroactively the comparison for each business day.

If the number of ‘overshootings’ for the most recent 250 business days exceeds 4 in 
the case of a 99% confidence interval, additional analysis is warranted to identify 
sources of ‘overshootings’ and what measures (if any) are required to improve the 
accuracy of the model.In its 2014 activity report, CSSF has provided information re-
garding their review of VaR backtesting programmes. CSSF  stated that the require-
ment described above should be supplemented with additional analyses such as:

• Assessing the VaR at different confidence intervals.
• Testing for of clusters of exceptions.
• Accounting for the magnitude of exceptions.
• Identifying insufficient number of exceptions.

Risk management needs to list and specify procedures for:
• Statistical tests to be performed monthly e.g.:

 - Unconditional coverage (UC) i.e. that model has the expected cover-
age (99% in the standard approach).

 - Independence (IND) i.e. that the occurrence of one exception doesn’t 
affect the probability of occurrence of other exceptions (exceptions 
don’t cluster together). 

 - Other tests e.g. joint test (UC+IND), size or timing of ‘overshoot-
ings’, etc. 

• Monthly analysis beyond statistical tests:
 - Review moves of the underlying risk factors.
 - Check for large changes in positions.
 - Probe for event risk that might not have been captured (FED taper-

ing, Lehman bankruptcy, Fukushima meltdown, etc.).
 - Contrast backtesting results to expected shortfall and stress-test 

results to gauge result plausibility.

• Frequency/triggers, for further ad-hoc analysis:
 - Examine model’s underlying assumptions. 
 - Graphical checks to capture forms of clustering not tested statistical-

ly.
 - Pay attention to what happens in the tail.
 - Contrast with backtesting results at the industry level.
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The Association of the Luxembourg Fund
Industry (ALFI), the representative body for
the Luxembourg investment fund community,
was founded in 1988. Today it represents more than 
1 300 Luxembourg-domiciled investment funds, 
asset management companies and a wide variety of 
service providers including depositary banks, fund 
administrators, transfer agents, distributors, law 
firms, consultants, tax advisers,
auditors and accountants, specialist IT providers and 
communications agencies.

Luxembourg is the largest fund domicile
in Europe and its investment fund industry
is a worldwide leader in cross-border fund
distribution. Luxembourg-domiciled
investment structures are distributed in
more than 70 countries around the globe,
with a particular focus on Europe, Asia,
Latin America and the Middle East.

ALFI defines its mission as to “Lead industry
efforts to make Luxembourg the most
attractive international centre”.

Its main objectives are to:

Help members capitalise on industry trends
ALFI’s many technical committees and
working groups constantly review and
analyse developments worldwide, as well as
legal and regulatory changes in Luxembourg,
the EU and beyond, to identify threats and
opportunities for the Luxembourg fund
industry.

Shape regulation
An up-to-date, innovative legal and fiscal
environment is critical to defend and
improve Luxembourg’s competitive position
as a centre for the domiciliation, administration and 
distribution of investment funds. Strong relation-
ships with regulatory authorities, the government 
and the legislative body enable ALFI to make an 
effective contribution to decision-making through 
relevant input for changes to the regulatory frame-
work, implementation of European directives and 
regulation of new products or services.

Foster dedication to professional
standards, integrity and quality
Investor trust is essential for success in
collective investment services and ALFI thus
does all it can to promote high professional
standards, quality products and services,
and integrity. Action in this area includes
organising training at all levels, defining codes of 
conduct, transparency and good corporate gover-
nance, and supporting initiatives to combat money 
laundering.

Promote the Luxembourg investment fund 
industry
ALFI actively promotes the Luxembourg
investment fund industry, its products and its 
services. It represents the sector in financial and in 
economic missions organised by the Luxembourg 
government around the world and takes an active 
part in meetings of the global fund industry.

ALFI is an active member of the European
Fund and Asset Management Association,
of the European Federation for Retirement
and of the International Investment Funds
Association.

To keep up to date with all the news from the asso-
ciation and the fund industry in Luxembourg, join 
us on LinkedIn (The Luxembourg Fund Industry 
Group by ALFI), Twitter (@ALFIfunds), Youtube, 
Vimeo or visit our website at www.alfi.lu.

about alfi
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